Refine Your Search

Topic

Search Results

Standard

Gland Design: Scraper, Landing Gear, Installation

2006-08-02
HISTORICAL
AS4052A
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general-purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Gland Design: Scraper, Landing Gear, Installation

2021-02-03
HISTORICAL
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Arrestor Cable Traversing Considerations For Landing Gear

2023-09-06
WIP
AIR8619
This SAE Aerospace Information Report (AIR) discusses the potential considerations for landing gear that may have to traverse arresting cables. This can be a consideration civil aircraft and aircraft without arrestor hooks that operate into dual use (military and civil) airfields.
Standard

Landing Gear Servicing

2013-04-22
HISTORICAL
ARP5908
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber shock struts.
Standard

Landing Gear, Aircraft Shock Absorber (Air-Oil Type)

2023-10-24
WIP
AS8703
This project will convert MIL-L-8552 (including changes defined in Amendment 2, 10 December 1968) word-for-word into an SAE Aerospace Standard. The new document will be approved in accordance with SAE's "accelerated approval" process.
Standard

Landing Gear Switch Selection Criteria

2022-07-06
CURRENT
AIR5024A
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices (sensor or switch) when used on landing gear. It also contains information which may be helpful when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines based on historic infromation of what is being used.
Standard

Landing Gear Switch Selection Criteria

2021-02-03
HISTORICAL
AIR5024
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices when used on landing gears. It also contains information, which may be helpful, when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines.
Standard

Plain Bearing Selection for Landing Gear Applications

2023-08-30
WIP
AIR1594E
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Aircraft Nosewheel Steering Systems

2012-07-03
HISTORICAL
ARP1595A
This document provides recommended practices for the design, development, and verification testing of aircraft nosewheel steering (NWS) systems.
Standard

Aircraft Nosewheel Steering/Centering Systems

2019-04-17
CURRENT
AIR1752A
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available.
Standard

AIRCRAFT NOSE WHEEL STEERING/CENTERING SYSTEMS

2011-08-10
HISTORICAL
AIR1752
This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new "lessons learned" become available.
Standard

Design, Development and Test Criteria - Solid State Proximity Switches/Systems for Landing Gear Applications

2001-10-01
HISTORICAL
AIR1810B
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
Standard

DESIGN, DEVELOPMENT AND TEST CRITERIA - SOLID STATE PROXIMITY SWITCHES/SYSTEMS FOR LANDING GEAR APPLICATIONS

1991-06-01
HISTORICAL
AIR1810A
This document will examine the more important considerations relative to the utilization of "one piece", or integral electronics proximity switches, and "two piece", or separate sensor and electronics proximity switches, for applications on aircraft landing gear. In general, the recommendations included are applicable for other demanding aircraft sensor installations where the environment is equally severe.
X